PENJEJAKAN FITUR BERBASIS KOHERENSI TEMPORAL DALAM SISTEM ANIMASI EKSPRESI WAJAH

Samuel Gandang Gunanto, Mochamad Hariadi, Eko Mulyanto Yuniarno

Abstract


Abstrak


Tingginya permintaan produktivitas industri animasi di Indonesia menuntut adanya perubahan
di sektor produksi. Teknologi motion capture merupakan penerapan prinsip visi komputer
yang mengadaptasi indera mata manusia untuk mengenali fenomena gerakan yang tertangkap
kamera dan memetakannya dalam pola gerak virtual. Tulisan ilmiah ini akan membahas metode
penjejakan fitur penanda di wajah manusia untuk mendapatkan informasi mengenai ekspresi
wajah. Teknik penjejakan menggunakan penerapan prinsip koherensi temporal. Asumsi yang
digunakan pada penelitian ini berargumentasi bahwa dengan menggunakan pendekatan
koherensi temporal, maka proses penjejakan fitur di citra sekuensial dapat disederhanakan
dengan perhitungan nilai kedekatan pada penanda di setiap frame-nya. Hasil yang didapat
menunjukkan bahwa proses penjejakan fitur yang diusulkan memiliki hasil yang handal untuk
menangani banyak frame. Komputasi yang digunakan juga sangat efisien dan hemat karena
prosesnya tidak memerlukan tahap pembelajaran terlebih dahulu. Kumpulan hasil penjejakan
parameter fitur penanda secara sekuensial akan membentuk sebuah basis data ekspresi visual
dari wajah manusia.

 

Abstract

Temporal Coherence Based Feature Tracking in the Animation System of Facial Expression.
High demand on the productivity of the animation industry in Indonesia requires a change
in the existing production process. Motion capture technology is the implementation of a
computer vision principle to adopt the human eye senses to understand the phenomenon of
motion results from a camera and to map the virtual movement patterns. This paper will
discuss a method for tracking marker features in the human face to obtain information about
facial expressions. The tracking technique is using implementation of temporal coherence
principle. This research assumes that by using temporal coherence approach, the tracking
process in sequential images can be simplified by calculating similarity on markers in each
frame. The result shows that this feature-tracking process have reliable result to handle a
lot of frames. The computation used is very efficient and cheap because it does not require
a learning process in advance. The precision accuracy of tracking parameters generated a
database of good visual expression.


Keywords


marker-based tracking; temporal coherence; facial animation

Full Text:

PDF

References


Bolkart, T., & Wuhrer, S. 2015. “3D Faces in

Motion: Fully Automatic Registration

and Statistical Analysis”. Computer

Vision and Image Understanding. Vol.

: 100-115.

Chau, D. P., Bremond, F., & Thonnat, M. 2011.

“A Multi-Feature Tracking Algorithm

Enabling Adaptation to Context

Variations”. The International Conference

on Imaging for Crime Detection and

Prevention (ICDP). London.

Dutreve, L., Meyer, A., & Bouakaz, S. 2008.

“Feature Points Based Facial Animation

Retargeting”. Proceedings of the 15th

ACM Symposium on Virtual Reality

Software and Technology.

Ekman, P., & Friesen, W. 1978. Facial Action

Coding System: A Technique for the

Measurement of Facial Movement.

California: Consulting Psychologists

Press, Inc.

Hjortsjo, C. H. 1970. Man’s Face and Mimic

Language. Malm: Nordens Boktryckeri.

Johnson, A. E., & Hebert, M. 1997.

“Recognizing Objects by Matching

Oriented Points”. IEEE International

Conference on Computer Vision and

Pattern Recognition. p. 684-692.

Ko, J. G., Kim, K. N., & Ramakrishna, R. S.

“Facial Feature Tracking for Eye-

Head Controlled Human-Computer

Interface”. IEEE TENCON’99. Cheju.

Parke, F. I. 1972. “Computer Generated

Animation of Face. Proceedings of the

ACM Annual Conference. p. 451-457.

Parke, F. I., & Waters, K. 2008. Computer Facial

Animation. 2nd Edition. Massachusetts:

AK Peters.

Sobottka, K., & Pitas, I. 1997. “A Fully

Automatic Approach to Facial Feature

Detection and Tracking”. International

Conference on Audio and Video-Based

Biometric Person Authentication.

Switzerland: Crans-Montana.




DOI: http://dx.doi.org/10.24821/rekam.v12i2.1425

Refbacks

  • There are currently no refbacks.